skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jain, Divya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. SUMMARY The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes inMedicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression ofMtGLV9andMtGLV10at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots ofM. truncatulaand application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways. 
    more » « less
  3. Heterogeneous ice nucleation in the atmosphere impacts climate, but the magnitude of the effect of ice clouds on radiative forcing is uncertain. Surfaces that promote ice nucleation are varied. Because O, Si, and Al are the most abundant elements in the Earth's crust, understanding how the Si : Al ratio impacts the ice nucleation activity of aluminosilicates through exploration of synthetic ZSM-5 samples provides a good model system. This paper investigates the immersion freezing of ZSM-5 samples with varying Si : Al ratios. Ice nucleation temperature increases with increasing surface Al content. Additionally, when ammonium, a common cation in aerosol particles, is adsorbed to the zeolite surface, initial freezing temperatures are reduced by up to 6 °C in comparison to proton-terminated zeolite surfaces. This large decrease in ice nucleation activity in the presence of ammonium suggests that the cation can interact with the surface to block or modify active sites. Our results on synthetic samples in which the surface composition is tunable gives insight into the role of surfaces in heterogeneous ice nucleation processes in the atmosphere. We emphasize the importance of examining surface chemical heterogeneities in ice nucleating particles that could result from a variety of aging pathways for a deeper understanding of the freezing mechanism. 
    more » « less
  4. null (Ed.)